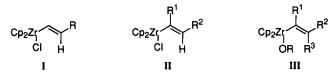


РП: S0040-4039(96)02322-2

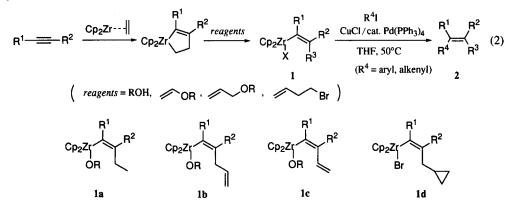

Coupling Reaction of Alkenylzirconocenes with Aryl or Alkenyl Iodides in the Presence of CuCl/Pd(PPh₃)₄

Ryuichiro Hara, Yasushi Nishihara, Philippe D. Landré and Tamotsu Takahashi*

Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Abstract: Trisubstituted alkenylalkoxyzirconocenes which have been prepared from carbozirconation reactions of internal alkynes via zirconacyclopentenes reacted with aryl or alkenyl iodides in the presence of CuCl and a catalytic amount of Pd(PPh₃)₄ to give coupling products. Copyright © 1996 Elsevier Science Ltd

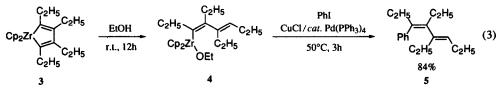
Alkenylzirconocenes have been useful intermediates for preparation of disubstituted or trisubstituted stereodefined alkenes, 1,2 since alkenylzirconocenes of type I and II are easily obtained by hydrozirconation reactions of alkynes,³ or by oxidative addition of alkenyl halides to zirconocene.⁴ Further coupling reactions of these alkenylzirconocenes with aryl iodides or alkenyl iodides have been developed by Negishi using Pd(PPh₃)₄ (for type I)^{2a} and ZnCl₂/Pd(PPh₃)₄ (for type II)⁵ as the catalyst systems. Recently, we have reported a novel preparative method of alkenylalkoxyzirconocenes (type III: 1a-1c) and alkenylbromozirconocenes (1d) by various carbozirconation reactions of internal alkynes via zirconacyclopentenes. The reactions of zirconacyclopentenes with alcohols, allyl ethers, vinyl ethers and 4-bromo-1-butene gave ethylzirconation (1a),⁶ allylzirconation (1b),⁷ vinylzirconation (1c)⁸ and cyclopropylmethylzirconation (1d)⁹ products of alkynes, respectively. However, for type III, unfortunately neither Pd(PPh₃)₄ nor ZnCl₂/Pd(PPh₃)₄ gave positive results.



During the course of our study on the reactivity of type III,¹⁰ we found that CuCl/Pd(PPh₃)₄ was a very useful combination for the coupling reaction of type III with aryl or alkenyl iodides to give stereodefined tetrasubstituted alkenes (eq 1).¹¹ In this paper we would like to report the coupling reaction of alkenylalkoxy-zirconocenes of type III and alkenylbromozirconocenes with aryl or alkenyl iodides in the presence of CuCl and a catalytic amount of Pd(PPh₃)₄.

$$Cp_{2}Z_{T} \xrightarrow{R^{1}}_{X = R^{3}} \frac{R^{4}I/CuCl/cat. Pd(PPh_{3})_{4}}{THF, 50^{\circ}C} \xrightarrow{R^{4}}_{R^{4}} \frac{R^{2}}{R^{3}}$$
(1)

Typical procedure is as follows. A solution of zirconacyclopentene¹² prepared from 4-octyne (1


mmol) was treated with (a) t-butanol (1.1 mmol) at room temperature for 1h, (b) allyloxytrimethylsilane (2 mmol), at 50_{\circ} C for 1h, (c) butyl vinyl ether (2 mmol) at 50_{\circ} C for 6h, or (d) 4-bromo-1-butene (1.5 mmol) at 50° C for 6h gave the corresponding carbozirconation products (1a-d). To the solution were added CuCl (1.3 mmol), iodobenzene (1 mmol) and Pd(PPh₃)₄ (0.05 mmol) in this order, and the mixture was stirred at 50° C for 3h. After the usual workup, compounds $2a^{13}$ (90%), 2k (92%), 2o (67%) and 2q (77%) were obtained (eq 2). All were one-pot reactions.

The results are summarized in Table 1. To an alkyne were introduced two newly formed carbon-carbon bonds, one by the carbozirconation reaction and the other by a coupling reaction with aryl or alkenyl iodides. The final products, tetrasubstituted alkenes 2a-r, were obtained in good to high yields. The carbozirconation reaction proceeded selectively in a *syn*-addition manner as reported⁷, and the stereochemistry was retained during the coupling reaction. When allyloxytrimethylsilane was used, allylated compounds 2a-j were obtained in good to high yields. Since the allylzirconation reaction was not regioselective when 1-phenyl-1-hexyne was employed, a mixture of two regioisomers 2h was obtained in combined yield of 76% in a ratio of 3:1. In all cases, stereoisomerization of the alkene moiety or homo-coupling¹⁴ of alkenylzirconium 1 was not observed.

Various aryl iodides also successfully coupled with alkenylzirconium compounds of type III. *p*-Substituted phenyl iodides were examined (entry 2–5). The electron-donating or -withdrawing nature of *p*-substituents did not have significant influence on this reaction. 2-Iodothiophene and α -iodonaphthalene gave thienyl compound **2m** and naphthalene derivative **2n**, respectively. Instead of aryl iodides, alkenyl iodides were also employed to give pentasubstituted conjugated dienes **2i**, **2j** and **2l**.

In addition to type III compounds, this catalyst system of CuCl/Pd(PPh₃)₄ could be used for dienylzirconium compound 4. Zirconacyclopentadiene 3 was monoprotonated by alcoholysis to give dienylzirconium complex 4, and further treatment with iodobenzene under similar reaction conditions gave the coupling product 5 in 84% yield (eq 3).

Entry	$R^1 - R^2$	Reagents	R ⁴ I		Products		Yields (%) ^a
1 2	C3H7 — C3H7	00114		Y=H Y=CH ₃	C ₃ H ₇ C ₃ H ₇	2a 2b	90 66
3 C 4 5	- <u></u>	OSiMe ₃	v∕~∕	Y=CO ₂ Et Y=OMe Y=NO ₂	s N	2c 2d 2e	74 82 74
	Me3Si ———— C4H9	OSiMe ₃	PhI		Y Me ₃ Si Ph	2¢	68
7	Ph Ph	OSiMe ₃	PhI		Ph Ph "	2g	51
8	Ph =- C4Hy	OSiMe ₃	PhI	Ph Ph		²h 2h	76 (75:25)
9	C ₂ H ₅ — — C ₂ H ₅	OSiMe ₃	∠	С	C ₂ H ₅ , C ₂ H ₅ , C ₂ H ₅ , C ₂ H ₅ , C ₂ H ₅	2i	64
10	C3H7	OSiMe ₃	C ₃ H ₇	С	C ₃ H ₇ C ₃ H ₇ C ₃ H ₇	2j	81
11	C ₃ H ₇ — — C ₃ H ₇	'BuOH	PhI		Ph C_3H_7 C_3H_7 C_3H_7	2k	92
12	C ₃ H ₇ ————————————————————————————————————	'BuOH	C ₃ H ₇	C	C ₃ H ₇ C ₃ H ₇ C ₃ H ₇ C ₃ H ₇	21	90
13	C3H7	'BuOH	\int_{s}^{t}		C ₃ H ₇ S	2m	76
14	C3H7 — — C3H7	'BuOH		ć		2n	76
15	C3H7	∕∕^ O [#] Bu	PhI			20	67
16	PhPh	∕∕~O [#] Bu	Phi		Ph Ph	2р	66
17	C ₃ H ₇ — — C ₃ H ₇	<i>m</i> → Br	Phi		C ₃ H ₇	2q	77
18	Ph Ph	<i>→</i> Br	Phl		Ph Ph	2r	84

Table 1. Coupling Products of Alkenylzirconocenes with Aryl or Alkenyl lodides

^a Yields were determined by GC. ^b Ratio of regioisomers.

When the CuCl/Pd(PPh₃)₄ system was applied to alkenylzirconium compounds of type I and II, the desired coupling compounds were the major product. However, a considerable amount of homo-coupling products was observed even in the presence of Pd(PPh₃)₄.

We conclude that, when an alkenylzirconocene has an OR ligand (1a-c, 4), Pd(PPh₃)₄ or ZnCl₂/Pd(PPh₃)₄ was not useful for the coupling reactions of alkenylzirconocenes with aryl or alkenyl iodides. Use of a stoichiometric or catalytic amount of CuCl did not give satisfactory results. However, a combination of CuCl and a catalytic amount of Pd(PPh₃)₄ was very effective.

REFERENCES AND NOTES

- Knight, D. W. Coupling Reactions between sp² carbon centers. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon Press: Oxford 1991, vol. 3., pp. 481–520.
- (a) Okukado, N.; Van Horn, D. E.; Klima, W. L.; Negishi, E., *Tetrahedron Lett.* 1978, *12*, 1027–1030;
 (b) Vincent, P.; Beaucourt, J.-P.; Pichat, L., *Tetrahedron Lett.* 1982, *23*, 63–66; (c) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N., J. Am. Chem. Soc. 1987, *109*, 2393–2401;
 (d) Crombie, L. A.; Horsham, M. A.; Blade, R. J., *Tetrahedron Lett.* 1987, *28*, 4879–4882.
- 3. Schwartz, J.; Labinger, J. A., Angew. Chem. Int. Ed. Engl. 1976, 15, 333-340; and references cited therein.
- 4. Takahashi, T.; Kotora, M.; Nishihara, Y.; Nakajima, K., J. Am. Chem. Soc. 1995, 117, 11039-11040.
- 5. Negishi, E.; Okukado, N.; King, A. O., Van Horn, D. E.; Spiegel, B. I., J. Am. Chem. Soc. 1978, 100, 2254-2256.
- 6. Takahashi, T.; Aoyagi, K.; Hara, R.; Suzuki, N., J. Chem. Soc., Chem. Commun. 1993, 1042-1044.
- (a) Takahashi, T.; Suzuki, N.; Kageyama, M.; Kondakov, D. Y.; Hara, R., *Tetrahedron Lett.* 1993, 34, 4811-4814; (b) Suzuki, N.; Kondakov, D. Y.; Kageyama, M.; Kotora, M.; Hara, R.; Takahashi, T., *Tetrahedron* 1995, 51, 4519-4540.
- 8. Takahashi ,T.; Kondakov, D. Y.; Xi, Z.; Suzuki, N., J. Am. Chem. Soc. 1995, 117, 5871-5872.
- 9. Takahashi, T.; Kondakov, D. Y.; Suzuki, N., Tetrahedron Lett. 1993, 34, 6571-6574.
- 10. For example, see Takahashi, T., Kotora M.; Kasai, K.; Suzuki, N., Tetrahedron Lett. 1994, 35, 5685-5688.
- For the coupling reactions using alkenylcopper, see Regan, A. C. One or More C=C Bond(s) Formed by Addition. In *Comprehensive Organic Functional Group Transformations*, Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W. Eds.; Pergamon Press: Oxford 1995, vol. 1, pp. 539–542.
- (a) Takahashi, T.; Kageyama, M.; Denisov, V.; Hara, R.; Negishi, E., *Tetrahedron Lett.*, 1993, 34, 687–690.
 (b) Xi, Z.; Hara, R.; Takahashi, T., J. Org. Chem., 1995, 60, 4444–4448.
- Compound 2a: ¹H-NMR (CDCl₃, Me₄Si) δ 0.84 (t, 3H, J=7.3Hz), 0.96 (t, 3H, J=7.4Hz), 1.19-1.33 (m, 2H), 1.41-1.55 (m, 2H), 2.14 (t, 2H, J=7.8Hz), 2.32 (t, 2H, J=7.6Hz), 2.57 (d, 2H, J=6.3Hz), 4.87-4.94 (m, 2H), 5.61-5.76 (m, 1H), 7.06-7.30 (m, 5H); ¹³C-NMR (CDCl₃, Me₄Si) δ 14.00 (CH₃), 14.32 (CH₃), 21.47 (CH₂), 22.01 (CH₂), 32.88 (CH₂), 36.21 (CH₂), 37.57 (CH₂), 114.91 (CH₂), 125.93 (CH), 127.81 (CH), 128.73 (CH), 133.35 (q), 137.72 (CH), 143.74 (q); HRMS calcd for C₁₇H₂₄, 228.1877, found 228.1870.
- (a) Zweifel, G.; Miller, R. L., J. Am. Chem. Soc. 1970, 92, 6678-6679; (b) Yoshifuji, M.; Loots, M. J.; Schwartz, J., Tetrahedron Lett. 1977, 18, 1303-1306; (c) Ref. 8.

(Received in Japan 3 October 1996; accepted 25 November 1996)